中考广州站 > 广州中考 > 【归纳总结】中考数学必考知识点总结

【归纳总结】中考数学必考知识点总结

2009-12-23  作者:匿名  来源:网络  进入论坛

  第一章实数   ★重点★实数的有关概念及性质,实数的运算   ☆内容提要☆   一、重要概念   1。数的分类及概念   数系表:   说明:“分类”的原则:1)相称(不重、不漏)   2......

  4。系数与指数

  区别与联系:①从位置上看;②从表示的意义上看

  5。同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律

  6。根式

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

  7。算术平方根

  ⑴正数a的正的平方根([a≥0—与“平方根”的区别]);

  ⑵算术平方根与绝对值

  ①联系:都是非负数,=│a│

  ②区别:│a│中,a为一切实数;中,a为非负数。

  8。同类二次根式、最简二次根式、分母有理化

  化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

  满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

  把分母中的根号划去叫做分母有理化。

  9。指数

  ⑴(—幂,乘方运算)

  ①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)

  ⑵零指数:=1(a≠0)

  负整指数:=1/(a≠0,p是正整数)

  二、运算定律、性质、法则

  1。分式的加、减、乘、除、乘方、开方法则

  2。分式的性质

  ⑴基本性质:=(m≠0)

  ⑵符号法则:

  ⑶繁分式:①定义;②化简方法(两种)

  3。整式运算法则(去括号、添括号法则)

  4。幂的运算性质:①·=;②÷=;③=;④=;⑤

  技巧:

  5。乘法法则:⑴单×单;⑵单×多;⑶多×多。

  6。乘法公式:(正、逆用)

  (a+b)(a-b)=

  (a±b)=

  7。除法法则:⑴单÷单;⑵多÷单。

  8。因式分解:⑴定义;⑵方法:A。提公因式法;B。公式法;C。十字相乘法;D。分组分解法;E。求根公式法。

  9。算术根的性质:=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)

  10。根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C.。

  11。科学记数法:(1≤a<10,n是整数=

  三、应用举例(略)

  四、数式综合运算(略)

  第三章统计初步

  ★重点★

  ☆内容提要☆

  一、重要概念

  1。总体:考察对象的全体。

  2。个体:总体中每一个考察对象。

  3。样本:从总体中抽出的一部分个体。

  4。样本容量:样本中个体的数目。

  5。众数:一组数据中,出现次数最多的数据。

  6。中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)

  二、计算方法

  1。样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

  2。样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

  3。样本标准差:

  三、应用举例(略)
 

页次:2/2 上一页 下一页  

广州中考网

关于我们 | 招聘信息 | 联系我们 | 网站地图

学而思中考网版权所有 Copyright @ 2005-2010 www.zhongkao.com All Rights Rreserved. 京ICP备09042963

不良信息举报信箱 客服电话:(020)87597747 主编邮箱 给中考网提意见