4。系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5。同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6。根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
7。算术平方根
⑴正数a的正的平方根([a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
①联系:都是非负数,=│a│
②区别:│a│中,a为一切实数;中,a为非负数。
8。同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9。指数
⑴(—幂,乘方运算)
①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)
⑵零指数:=1(a≠0)
负整指数:=1/(a≠0,p是正整数)
二、运算定律、性质、法则
1。分式的加、减、乘、除、乘方、开方法则
2。分式的性质
⑴基本性质:=(m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3。整式运算法则(去括号、添括号法则)
4。幂的运算性质:①·=;②÷=;③=;④=;⑤
技巧:
5。乘法法则:⑴单×单;⑵单×多;⑶多×多。
6。乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b)=
7。除法法则:⑴单÷单;⑵多÷单。
8。因式分解:⑴定义;⑵方法:A。提公因式法;B。公式法;C。十字相乘法;D。分组分解法;E。求根公式法。
9。算术根的性质:=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)
10。根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C.。
11。科学记数法:(1≤a<10,n是整数=
三、应用举例(略)
四、数式综合运算(略)
第三章统计初步
★重点★
☆内容提要☆
一、重要概念
1。总体:考察对象的全体。
2。个体:总体中每一个考察对象。
3。样本:从总体中抽出的一部分个体。
4。样本容量:样本中个体的数目。
5。众数:一组数据中,出现次数最多的数据。
6。中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
二、计算方法
1。样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2。样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3。样本标准差:
三、应用举例(略)
页次:2/2 上一页 下一页